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Abstract. In a recent paper the probability of forming a ring in vitreous B2O3 was evaluated
using the stochastic matrix method, as a description of the growth process of a solid. In
this work we generalize this method for the same substance introducing a probabilistic cut-off
temperature and find a theoretical Vogel–Fulcher–Tamman-like equation for the average relaxation
time (or viscosity) of the strong-glass-forming liquid. We take the average relaxation time to be
inversely proportional to the probability of forming a ring, calculated for a large number of steps
of growth. We also use the temperature derivative method to recognize the functional dependence
of the relaxation time.

1. Introduction

Many liquids can be supercooled below their equilibrium melting points and solidified to the
glassy state, provided that the cooling rate is fast enough to avoid crystallization. The most
significant features on approaching glass transition are a rapid increase in the viscosity and a
slowing down of the structural relaxation. It turns out that the relaxation patterns in different
glass-forming liquids show several common features, such as the temperature dependence of
the structural relaxation timeτ usually well represented by the Vogel–Fulcher–Tamman (VFT)
empirical equation

τ = τ0 exp

(
DT0

T − T0

)
. (1)

T0 corresponds to the temperature at whichτ is infinite, τ0 is a reference relaxation time and
D is a measure of the structural ‘strength’ of the system. The largestD (D ≈ 20–100) values
characterize liquids that are most resistant to temperature-induced changes. These liquids
display a nearly Arrhenius behaviour and are referred to as ‘strong’ [1]. To this group belong
covalent bonded network glass formers like SiO2 (D = 100) [1] and B2O3 (D = 35) [2].
At the other extreme are the ‘fragile’ glasses, i.e. those systems with the smallestD values
(D ≈ 3–5), exhibiting the most rapid changes ofτ in the supercooled region. In fragile systems
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dramatic changes ofτ in the transition range imply thatT0 is close toTg while for strong glasses
T0 is far belowTg (Tg/T0 ≈ 2 for B2O3), Tg being the glass transition temperature.

Another characteristic of the dynamics at the glass transition is the non-exponential time
decay of the structural relaxation functionφ(t). It is commonly expressed by the stretched
exponential function

φ(t) = A exp[−(t/τKWW)βKWW ]. (2)

Experimental findings suggest that the smaller the stretching parameterβKWWW is, the more
fragile is the system [3–5]. However, there are recent indications of a more complicated time
decay of the relaxation function than that stated by equation (2). Investigations of various
fragile glass formers show a two-step behaviour, including a fast process, generally in the
picosecond regime, which precedes the main so-calledα-relaxation [6–12].

In the case of B2O3 the stretching parameterβKWW obtained in this fit is found to increase
slightly with temperature, from 0.6 close toTg (526 K) to about 0.8 at the highest temperature
of observation, which is also in agreement with previous measurements of theα-process
[13–15]. AsTg is approached, the rapidly increasing time scale of theα-relaxation makes it
difficult to detectφ(t) by photon correlation spectroscopy (PCS). Even though the spectra
display only the initial part of theα-process and the final decay towards the base line is not
observed, a stretched exponential fits the curves well in the limited range 10−2 < t < 102 s
and with a stretching parameterβKWW similar to that found at higher temperatures. More
interesting is that the short duration of the correlation function (<10−2 s) deviates from the
functional form of equation (2). This implies that some other relaxation process occurs over
a considerably shorter time scale than theα-process [16]. The effect is so sharp that about
half of the decay occurs in a time less than that which can be measured by PCS. Indeed the
correlation function decays to aboutφ(t) = 0.5 at very small times (∼10−6 s). Therefore
only the tail of the faster process can be observed, which mainly relaxes at times<10−6 s. No
temperature dependence ofτ was noted for the faster process in the range 506–543 K where
it was observed.

From a theoretical point of view, many efforts have been made towards elucidating the
temperature dependence ofτ and other properties of liquid glass formers. In a recent theoretical
work, Barrioet al [17] used a statistical model in which the stochastic matrix method (SMM)
was applied to find the fraction of boron atoms belonging to boroxol rings in a boron oxide
(B2O3) glass. They evaluated the characteristic energies related to the formation of a single
B–O–B unit in an oxygen bridge or in a boroxol ring and the probability of forming a ring.
The model also gave a reasonable qualitative prediction for a characteristic exponent ruling
the growth of microclusters.

In a recent article [18] we derived a theoretical Arrhenius equation for the average
relaxation time (or viscosity) of the strong-glass-forming liquid B2O3 using the SMM. The
main idea is to take the average relaxation time as inversely proportional to the probability
of forming a ring, calculated for a large number of growth steps. To identify the type of
equation that was obtained for the average relaxation time, we used the method of temperature
derivatives [19, 20]. This method rests on the idea of investigating the structure of expressions
dn logx/dT n and d logx/d(1/T ) (n = 1, 2) to reduce the number of fit parameters and
linearize both the VFT and Arrhenius equations.

The purpose of this work is to generalize the SMM by introducing an Arrhenius
probabilistic cut temperature and to show that this generalization leads to a non-Arrhenius
form for the relaxation time, as well as to a physical interpretation of significant parameters
which is related to the topology of growth of boroxol rings. The paper is divided as follows.
In section 2 we present the generalization of the SMM. In section 3 we use the results obtained
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in section 2 to study the relaxation time for B2O3 and, finally, in section 4 we conclude with
some remarks on the nature of these results.

2. Generalization of the SMM and theoretical framework for the VFT equation

Through the SMM it is possible to describe the growth process of a solid [17]. In this method
such a process can be described by a matrix acting on a vector. The matrix components define
the statistical weights of the transitions resulting in the corresponding transformation of sites.
The vector components represent the probabilities of finding a given site on the rim of such a
cluster. The matrix is used to transform this vector into a new one after adding one atom to
the cluster. Transformation of the rim depends on the site to which the new atom sticks. Each
sticking process has a certain probability of occurring, so that the matrix elements contain
the probabilities of transforming each kind of site into others. The probability factors must
include two contributions. (1) The statistical weight for each process, that is the number of
ways leading to the same final result and (2) the Boltzmann factor taking into account the
energy barrier necessary to form a certain kind of bond. The probability of sticking a new
unit to the bulk is taken to be proportional to exp(−Em/kBT ), whereEm is the energy cost of
sticking a unit in them form at temperatureT andkB is the Boltzmann constant. It is important
to note that, according to this assumption, it is possible to stick a unit at every temperatureT .
Nevertheless, it would be much more physically meanngful if a temperatureT ′ is introduced
into the Boltzmann factor such that, forT = T ′, the probability of sticking a unit in the bulk is
equal to zero. This argument can be supported because at some temperature belowTg the glass
system is unable to displace any unit for possible attachment to the bulk. Thus by introducing
this probabilistic cut-off temperature we may generalize the SMM so that the probability of
sticking a new unit at the rim is proportional to exp(−Em/kB(T − T ′)). Clearly if we set
T ′ = 0 the results obtained in the previous calculation are recovered.

To identifyT ′ as a physical property of the system we next calculate the relaxation time
for the growth system using the SMM and the generalization described above. To do this we
proceed as follows. We first take the average relaxation time to be inversely proportional to the
probability of forming a ring. Next, we identify the form of the relaxation equation by appealing
to the temperature derivative method. Finally we compare the resulting equation with that used
to reproduce the experimental data. We therefore begin with the SMM according to which the
probability for an average transition can be written asP(ξ) whereξ = exp(1E/k(T − T ′))
and1E is the difference between twoE′m at temperaturesT andT ′ respectively. If

τ ∝ 1/P (ξ) (3)

and we use the method of temperature derivatives to linearize equation (3) we get(
d lnτ−1

dT

)−1/2

=
(
1E

kB

)−1/2(
ξ

d lnP(ξ)

dξ

)−1/2

(T − T ′). (4)

For typical activation energies the temperature dependence ofP(ξ) can be neglected and
the second factor of equation (4) reduces to a constant so that integrating yields a VFT-like
equation. Thus,T ′ can be identified asT0 and ifT0 = 0 the Arrhenius equation is obtained. It
is important to note that in this theoretical context,T0 is interpreted not only as the temperature
that yields an infinite relaxation time, but it also is the temperature at which the probability of
sticking a unit into the bulk of the glass system is zero.
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3. Non-Arrhenius equation for theα-relaxation time

3.1.B2O3 as an example

In this section we wish to derive the viscosity of B2O3 using the results obtained in the last
section, as well as the probability of forming a ring of B2O3. To do this we proceed in exactly
the same way as in the derivation of equation (4). We obtain the probability of forming a
ring when passing from thej th layer to the (j + 1)th layer by simply given by counting the
proportion of rings that were formed between stepj and stepj + 1. If we calculate this for a
large number of steps of growth,P jB can be replaced by its limiting value. According to Barrio
et al [17] for B2O3 this is given by

P∞B =
24ξ2 + 16ξ

84ξ2 + 107ξ + 25
. (5)

According to our second assumption, we can now identify the transition probability as the
probability of forming a ring in B2O3. Furthermore, since the viscosity is proportional to the
relaxation time (τ ), and theα-relaxation time is inversely proportional to the average transition
probability, then

τ ∝ 1

P∞B
= 84ξ2 + 107ξ + 25

24ξ2 + 16ξ
. (6)

Taking the derivatives dn logx/dT n, d logx/d(1/T ) (n = 1, 2) of equation (6) wherex = τ ,
we find that

(
d ln(P∞B )

dT

)−1/2

= (T − T0)

(
E2 − E1

kB

)−1/2

L
−1/2
B2O3

(7)(
−d ln(P∞B )

dT −1

)−1/2

=
(

1− T0

T

)(
E2 − E1

kB

)−1/2

L
−1/2
B2O3

(8)

where

LB2O3 ≡
(
ξ

d lnP(ξ)

dξ

)
= 48ξ2 + 16ξ

24ξ2 + 16ξ
− 168ξ2 + 107ξ

84ξ2 + 107ξ + 25
. (9)

Taking typical values for the activation energy as quoted in reference [18], we know that
for τ � 1 andLB2O3 ≈ 1 the temperature dependence ofLB2O3 can also be neglected so that
equations (7) and (8) can be written as:(

d log(P∞B )
dT

)−1/2

= (T − T0)

(
E2 − E1

kB

)−1/2

(7a)

and (
−d log(P∞B )

dT −1

)−1/2

=
(

1− T0

T

)(
E2 − E1

kB

)−1/2

. (8a)

From equation (6) we can also calculate2(x) ≡ [d ln(x)/dT ]/[d2 ln(x)/dT 2] and if
LB2O3 is a constant we obtain

2(x) = −(T − T0)/2. (10)

If equations (7a), (8a) and (10) are integrated, a theoretical VFT-like equation is obtained,
namely

τ = τ0 exp

(
E2 − E1

kB(T − T0)

)
= τ0 exp

(
DT0

T − T0

)
(11)
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where the constantτ0 is the pre-exponential factor andD is a constant equal to [(E2−E1)/T0kB ]
that can be determined by comparing it with the experimental VFT equation. Equation (11)
is the main result of this paper. Comparing the experimental values obtained from the VFT
equation with equation (11), values forE2–E1 can be calculated (see table 1).

Table 1. In the first and second columns experimental parameters used to fit the VFT equation are
shown, taken from references [16] and [21]. In the third column the values obtained forE2–E1
from equation (11) are given.

Experimental data Experimental data Calculated by equation (11)
D T0 (K) E2–E1 (kcal mol−1) Ref.

35 266 18.207 [16]
7.69 445 6.79 [21]

To reproduce the experimental data obtained using equation (11) for B2O3 we takeD ≈ 35,
T0 ≈ Tg/2 [16] andτ(Tg) = 1013 Poise to calculateτ0. With these values we can also calculate
the activation energy atTg, finding thatE2–E1 = 18.207 kcal mol−1.

3.2. Physical interpretation of theLB2O3 function

In this section we discuss the physical interpretation ofLB2O3. This can be achieved by
calculating the relaxation time using the fact that its value is proportional to the probability
of assembling two rings linked by a bridge. To do this we proceed as follows. Starting with
the SMM we calculate the probability of forming two rings in B2O3 linked by an oxygen
bridge. With this probability we can calculate the relaxation time if the transition probability
is associated with the form of this structure.

For B2O3, inspection of the possible configurations which may occur at the rim of the
clusters resulting from the agglomeration of the boron–oxygen singlets (B(O1/2)3) shows that
whenever a new singlet comes close to the rim, it can attach itself to one of the sites presenting
free valence ions; it may encounter one of six situations. Barrioet al [17] denote these
configurations byx, y, z, t , u andw, with x meaning an isolated singlet at the rim with only
one free valence ion available,y corresponding to a singlet at the rim with two free valence ions
available,z denoting two singlets in a chain with three valence ions, and finallyt corresponding
to three singlets in a chain. The terminationu corresponds to a free bond of a boron atom
trapped in a ring, while thew termination corresponds to two valence ions of two different
boron atoms trapped in the same ring. Then the factorsP(x, x), P(x, y), . . . that define the
statistical weights of the transitions resulting in the corresponding transformations of sites can
be displayed as a 6× 6 matrix, namely

0 0 0 P(t, x) 0 0
P(x, y) 0 P(z, y) P (t, y) P (u, y) P (w, y)

0 P(y, z) 0 P(t, z) 0 0
0 0 P(z, t) 0 0 0
0 0 0 P(t, u) 0 P(w, u)

0 0 P(z,w) P (t, w) 0 0

 . (12)

After normalization, the stochastic matrix that transforms the probability of finding one
configuration at the rim of a cluster (Px , Py , Pz, Pt , Pu, Pw) into a new set of probabilities (P ′x ,
P ′y , P

′
z, P

′
t , P

′
u, P

′
w) after an entire new layer of atoms has grown, with one new atom at each
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available site, is given by [17]

0 0 0
1 + 4ξ

5 + 12ξ
0 0

1 0
1

2 + 2ξ

3 + 2ξ

5 + 12ξ
1

1

2

0 1 0
1

5 + 12ξ
0 0

0 0
1

2 + 2ξ
0 0 0

0 0 0
2ξ

5 + 12ξ
0

1

2

0 0
2

2 + 2ξ

4ξ

5 + 12ξ
0 0



. (13)

Using the above matrix, the growth of a cluster is modelled by the successive application of
the matrix to an arbitrary initial vectorv0. Thus, the evolution of the probabilities at the rim
afterj steps is given byvj = Mjv0. If M has only one eigenvalue 1 in the limit of largej , vj
for B2O3 is given by

vj =


P∞x
P∞y
P∞z
P∞t
P∞u
P∞w

 =
1

84ξ + 107ξ + 25


1 + 4ξ

24ξ2 + 34ξ + 9
24ξ2 + 34ξ + 10

12ξ + 5
3ξ(4ξ + 3)
2ξ(12ξ + 7)

 . (14)

As stated above the probability of forming a ring when passing from thej th layer to the
(j + 1)th layer is given by counting the number of rings that were formed between stepj and
the stepj + 1. This information is encoded in the matrix as the probability of the processes
zj → wj+1 and tj → uj+1, wj+1, P

j

B(T ) = Pzj (M63) + Ptj (M54 + M64) whereMij are the
respectivei j elements of the matrixM, so,

P
j

B =
ξ(24ξ + 16)

84ξ2 + 107ξ + 25
. (15)

To calculate the probability of forming two rings in B2O3 linked by an oxygen (y) bridge it is
important to note that in equation (15) the two forms of rings,u andw, are present. To calculate
this probability we need to count the probability of forming bridges before a ring is formed,
and then the probability of forming a ring before the ring itself with the bridge is formed. The
u rings are given byPtjM54 and all of them, in the next step to stick a unit, give an oxygen
bridge (y-site), see matrix (12). Thew rings are given byPzjM63 + PtjM64 and half of them
give a bridge before a unit is attached (see matrix (12)). Therefore the probability of finding a
ring with an oxygen bridge is given byPtjM54+1/2(PzjM63+PtjM64). Focusing our attention
on matrix (12), we note that starting withy (they before a ring) to add the next ring there is
only one way—to go beyondP(y, z) toP(z,w). All the y give az before sticking a unit and
we then have a probability equal to one to have this transition. But the probability to form a
ring before thez is given byM63, so we haveP∞2B = 1/2M63[PtjM54+1/2(PzjM63+PtjM64)],
where the factor of one half is added because we have two rings linked together. Finally

P∞2B =
12ξ3 + 9ξ2

(2 + 2ξ)(84ξ2 + 107ξ + 25)
. (16)

If, as noted above, the glass transition for B2O3 corresponds to the temperature at which
rapid breakdown of two boroxol rings linked by an oxygen bridge first occurs and if the
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relaxation time is inversely proportional to the average transition probability, using the method
described in section 3.1 we find that(

d ln(P∞B )
dT

)−1/2

= (T − T0)

(
E2 − E1

kB

)−1/2

L
−1/2
2B2O3

(17)(
−d ln(P∞B )

dT −1

)−1/2

=
(

1− T0

T

)(
E2 − E1

kB

)−1/2

L
−1/2
2B2O3

(18)

where

L2B2O3 ≡
(
ξ

d lnP(ξ)

dξ

)
= 36ξ2 + 18ξ

12ξ2 + 9ξ
− ξ

1 + ξ
− 168ξ2 + 107ξ

84ξ2 + 107ξ + 25
.

Taking typical values for the activation energy for B2O3, ξ � 1 andL2B2O3 ≈ 2. On the
other hand, when we calculate the probability of a transition corresponding to the formation
of a single ring,LB2O3 ≈ 1 [18], so with the previous result we conclude thatL2B2O3 contains
information on how many rings are involved in the glass transition. Equations (17) and (18)
can be rewritten in the following form:(

d log(P∞B )
dT

)−1/2

= (T − T2)

(
2
(E2 − E1)

kB

)−1/2

(17a)

and (
−d log(P∞B )

dT −1

)−1/2

=
(

1− T0

T

)(
2
(E2 − E1)

kB

)−1/2

(18a)

which, when integrated, lead directly to VFT-like equations.
Having a physical interpretation ofL2B2O3, equation (11) can be generalized ton rings

giving

τ = τ0 exp

(
n
E2 − E1

kB(T − T0)

)
. (19)

The importance of equation (19) relies on the fact that comparing this equation with the
experimental expression for the relaxation time (equation (1)), the minimum number of rings
needed for the glass transition is obtained as

n = DkBT0/(E2 − E1). (20)

Experimentally, for B2O3, it is known thatD ≈ 35 andT0 ≈ 1/2Tg ≈ 262 [16]. Snyder [22]
estimated1E to be 6.0 kcal mol−1, on the basis ofab initio quantum mechanical calculations.
Inserting these values into equation (20) gives that the minimum number of rings linked by
oxygen bridges needed for the B2O3 glass transition is of the order of three. An activation
energy of 6.4±0.4 kcal mol−1 was obtained experimentally for B2O3 [21]; this number agrees
well with the experimental value of1E used here.

4. Concluding remarks

In this work we have obtained a theoretical VFT-like equation for the average relaxation
time (or viscosity) of the strong-glass-forming liquid B2O3 using the generalized stochastic
matrix method. To generalize the SMM we introduced a probabilistic cut-off temperature
(T ′). This temperature was introduced because we assume that below some temperature the
growth process cannot take place. Starting from these assumptions a non-Arrhenius form for
the relaxation time was obtained. Comparing the theoretical expression for the relaxation time
with the experimental one, we find that this probabilistic cut-off temperature corresponds to
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T0, the temperature at which the viscosity is infinite according to the VFT equation. This
theoretical framework allows for an interpretation of non-Arrhenius behaviour. In fact, if the
system has a probabilistic cut-off temperature we can expect a non-Arrhenius relaxation time;
if not, it exhibits an ARR behaviour.

To determine an expression for the relaxation time with the generalized SMM we took the
transition probability as the probability of forming a ring calculated for a large number of steps
of growth; this probability was obtained form the SMM. To identify an equation for the average
relaxation time we used the method of temperature derivatives and an VFT-like equation was
obtained (equation (11)). For this equation three parameters remain to be determined,τ0, D
andT0, and a comparison with experiment provided us with these values.

A physical interpretation ofL2B2O3 was also discussed. This result, and the value for the
activation energy, allowed us to predict the number of rings that are expected to be present in
a glass transition. For B2O3 we found that the minimum number of rings linked by oxygen
bridges is three ifE2–E1 is taken fromab initio quantum mechanical calculations or from
experimental data.

Moreover, the results of this paper may also be extended to other strong glass formers, if
the glassy state can be associated with the probability of assembling ring structures. Most of the
ideas and methods presented in this article can be applied to dendritic systems like AsxSe1−x ,
GexSe1−x , GexSb15Se85−x , etc, the results of which will be dealt with in forthcoming papers.
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